Hydrophobic Coating

Navigation

References

[1]         R. Benedix, F. Dehn, J. Quaas, and M. Orgass, “Application of titanium dioxide photocatalysis to create self-cleaning building materials,” Lacer, vol. 5, pp. 157–168, 2000.

[2]         M. Y. L. Chew, Staining of Facades. Singapore: World Scientific Publishing, 2004.

[3]         N. E. A. (NEA), “Weather Statistics.” 12-Apr-2016.

[4]         N. E. A. (NEA), “Air Quality and Targets.” 12-Apr-2016.

[5]         M. Spaeth and W. Barthlott, “Lotus-Effect®: Biomimetic super-hydrophobic surfaces and their application,” in Advances in Science and Technology, 2009, vol. 60, pp. 38–46.

[6]         J. Li, Z. Zhang, J. Xu, and C. P. Wong, “Smart Self‐Cleaning Materials—Lotus Effect Surfaces,” Encycl. Smart Mater., 2005.

[7]         I. Sas, R. E. Gorga, J. A. Joines, and K. A. Thoney, “Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning,” J. Polym. Sci. Part B Polym. Phys., vol. 50, no. 12, pp. 824–845, 2012.

[8]         Y. Ohama and D. Van Gemert, Application of Titanium Dioxide Photocatalysis to Construction Materials: State-of-the-Art Report of the RILEM Technical Committee 194-TDP, vol. 5. Springer Science & Business Media, 2011.

[9]         A. Maury and N. De Belie, “State of the art of TiO 2 containing cementitious materials: self-cleaning properties,” Mater. Construcción, vol. 60, no. 298, pp. 33–50, 2010.

[10]      D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, and I. Di Somma, “Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach,” Appl. Catal. B Environ., vol. 170–171, pp. 90–123, Apr. 2015.

[11]      W. Liu, Q. J. Xu, and J. Han, “Superhydrophobic surface preparation technology and its progress,” in Applied Mechanics and Materials, 2015, vol. 723, pp. 958–963.

[12]      Z. Wang, N. Koratkar, L. Ci, and P. M. Ajayan, “Combined micro-/nanoscale surface roughness for enhanced hydrophobic stability in carbon nanotube arrays,” Appl. Phys. Lett., vol. 90, no. 14, p. 143117, 2007.

[13]      S. Herminghaus, “Roughness-induced non-wetting,” EPL (Europhysics Lett., vol. 52, no. 2, p. 165, 2000.

[14]      NanoProtect, “Hydrophobic nano-coatings.” 12-Apr-2016.

[15]      V. James and Leger, “Skimming the surface: High performing additives,” Polym. Paint Colour J., vol. 201, p. 4558, 2011.

[16]      A. Solga, Z. Cerman, B. F. Striffler, M. Spaeth, and W. Barthlott, “The dream of staying clean: Lotus and biomimetic surfaces,” Bioinspir. Biomim., vol. 2, no. 4, p. S126, 2007.

[17]      Y. Xiu, D. W. Hess, and C. P. Wong, “UV and thermally stable superhydrophobic coatings from sol–gel processing,” J. Colloid Interface Sci., vol. 326, no. 2, pp. 465–470, 2008.

[18]      A. Marmur, “Super-hydrophobicity fundamentals: implications to biofouling prevention,” Biofouling, vol. 22, no. 2, pp. 107–115, 2006.

[19]      H. Zhang, R. Lamb, and J. Lewis, “Engineering nanoscale roughness on hydrophobic surface—preliminary assessment of fouling behaviour,” Sci. Technol. Adv. Mater., vol. 6, no. 3, pp. 236–239, 2005.

[20]      A. M. A. Mohamed, A. M. Abdullah, and N. A. Youna, “Corrosion behavior of superhydrophobic surfaces: A review,” Arab. J. Chem., vol. 8, no. 6, pp. 749–765, 2014.

[21]      OSHA, “OHSA Fact Sheet: Crystalline Silica exposure health hazard information,” RPRT, 2002.

[22]      H. Shi, R. Magaye, V. Castranova, and J. Zhao, “Titanium dioxide nanoparticles: a review of current toxicological data,” Part. Fibre Toxicol., vol. 10, p. 15, Apr. 2013.

[23]      J. H. Chen, C. C. Tsai, Y. Z. Kehr, L. Horng, K. Chang, and L. Kuo, “An experimental study of drag reduction in a pipe with superhydrophobic coating at moderate reynolds numbers,” in EPJ Web of Conferences, 2010, vol. 6, p. 19005.

[24]      S. Gogte, P. Vorobieff, R. Truesdell, A. Mammoli, F. van Swol, P. Shah, and C. J. Brinker, “Effective slip on textured superhydrophobic surfaces,” Phys. fluids, vol. 17, no. 5, p. 51701, 2005.

[25]      A. L. Terpeluk, “Effects of photocatalysis on concrete surfaces,” 2012.

[26]      L. Cassar, C. Pepe, G. Tognon, G. L. Guerrini, and R. Amadelli, “White cement for architectural concrete, possessing photocatalytic properties,” 11th Int. Congr. Chem. Cem. Durban, South Africa, 2003.

[27]      F. Vallé, B. Ruot, L. Bonafous, L. Guillot, N. Pimpinelli, L. Cassar, A. Strini, E. Mapelli, L. Schiavi, and C. Gobin, “Innovative self-cleaning and de-polluting facade surfaces,” in CIB World Building Congress, Toronto, Canada, 2004, pp. 1–7.

[28]      T. Yuranova, V. Sarria, W. Jardim, J. Rengifo, C. Pulgarin, G. Trabesinger, and J. Kiwi, “Photocatalytic discoloration of organic compounds on outdoor building cement panels modified by photoactive coatings,” J. Photochem. Photobiol. A Chem., vol. 188, no. 2, pp. 334–341, 2007.

[29]      Y. Zhang, “Methodology for aesthetic repair and rehabilitation of architectural concrete.,” 2008.

[30]      G. L. Guerrini, A. Plassais, C. Pepe, and L. Cassar, “Use of photocatalytic cementitious materials for self-cleaning applications,” Proc. Int. RILEM Symp. Photocatal. Environ. Constr. Mater. Florence, Italy. 8-9 Oct., 2007.